
..,
. .

Performance Results of Cooperating Expert Systems in a Distributed
Real-time Monitoring System

U. M. Schwuttke, J. R. Veregge, and A. G. Quan
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

818-354-1414
ums@puente.jpl. nasa.gov

ABSTRACT
A distributed monitoring and diagnosis system has been
developed and successfully applied to real-time moni-
toring of interplanetary spacecraft at NASA’s Jet Pro-
pulsion Laboratory. This system uses a combination of
conventional processing and artificial intelligence. Four
knowledge-based diagnosis modules are embedded
within a monitoring system that detects on-board space-
craft anomalies. Each of the four knowledge-based
systems is unique with respect to the others in its im-
plementation or use, resulting in an interesting set of
performance results that have been used as guidelines for
the design of our next generation real-time diagnostic
systems. Details of the distributed architecture, and the
general characteristics of the embedded diagnostic sys-
tenls are also provided.

1.0 INTRODUCTION
There are numerous definitions for real-time systems,

the most stringent of which involve guaranteeing correct sys-
tem response within a domain-dependent or situationally-
defined period of time. For applications such as diagnosis, in
which the time required to produce a solution can be non-
deterministic, this requirement poses a unique set of chal-
lenges in dynamic modification of solution strategy that
conforms with maximum possible latencies. However, an-
other definition of real-time is relevant in the case of moni-
toring systems where failure to supply a response in the
proper (and often infinitesimal) amount of time allowed does
no~ make the solution less useful (or, in the extreme example
of a monitoring system responsible for detecting and deflect-
ing enemy missiles, completely irrelevant). This more casual
definition involves responding to data at the same rate at
which it is produced, and is more appropriate for monitoring
applications with softer real-time constraints, such as inter-
planetary exploration, which results in massive quantities of
data transmitted at the speed of light for a number of hours

The nxearch described in this paper was carried out by the Jet Propulsion
Laboratory, California Institute of Technology under a contract with the
National Aeronautics and Space Administration. The authors wish to ac-
knowledge strong support from JPL’s Voyager and Galileo Projects,
Muitimission Opcmtions Support Office and Director’s Discretionary Fund.

before they even reach the monitoring system.

The latter definition of real-time has been applied to the
MARVEL system [Schwuttke et al. 1992] for automated
monitoring and diagnosis of spacecraft telentetry. An early
version of this system has been in continuous operational use
since it was first deployed in 1989 for the Voyager encounter
with Neptune. This system remained under incremental de-
velopment until 1991 and has been under routine mainte-
nance in operations since then, while continuing to serve as
an AI testbed in the laboratory. A second generation Galileo
application has been on-line for only one year and is still un-
der active development. The second generation system
builcls on experience gained with the earlier embedded diag-
nosis systems to achieve an order of magnitude increase in
processing capability.

The system architecture has been designed to facilitate
concurrent and cooperative processing by multiple diagnos-
tic expert systems in a hierarchical organization. The diag-
nostic modules adhere to concepts of data-driven reasoning,
constrained but complete nonoverlapping domains, meta-
knowledge of global consequences of anomalous data,
hierarchical reporting of problems that extend beyond a sin-
gle domain, and shared responsibility for problems that
overlap domains. The system enables efficient diagnosis of
complex system failures in real-time environments with high
data volumes and moderate failure rates, as indicated by ex-
tensive performance measurements.

2.0 COOPERATING DIAGNOSIS SYSTEMS
IN A DISTRIBUTED ARCHITECTURE
The need for robust mechanisms of cooperation

among real-time diagnostic modules has been an important
driver of the system architecture. The notion of joint respon-
sibility y [Jennings and Mamdani, 1992] as an alternative to the
more conventional notion of agents acting in self-interest
[Durfee 1988, Cohen 1990] has been amended with modular
problem decomposition and data-driven reasoning in order to
minimize the need for communication between agents. The
various modules in the distributed architecture of Figure 1
are allocated among a configuration of UNIX workstations.
The data management module receives data from a source (in
the case of our current application, the data is spacecraft te-

.,..
. .

DISTRIBUTED MARVEL ARCHITECTURE SUBSYSTEM PROCESS ARCHITECTURE

-’;::::” [::””””””]’”;;’::%’. . . [. . 1%’:s

Figure 1, The distributed architecture on the left can currently be configured to run on one to four
UNIX workstations. The hybrid subsystem processes on the left are composed of conventional
and knowledge processes, as shown in the figure on the right. Knowledge processes are used
only when a reasoning capability is explicitly required,

lemetry received from JPL’s ground data system) and allo- Forward-chaining demons are used to represent domain
cates it to the appropriate subsystem monitor based on
identification of data type. (Our system is partitioned accord-
ing to the structure of the spacecraft, with one subsystem
monitor for every spacecraft subsystem monitored by MAR-
VEL, including command, flight data, attitude and articula-
tion control, and telecommunications; propulsion, thermal,
and power have not been addressed.)

Each of the subsystem monitors provides algorithmic
functions such as validation of telemetry, detection of anom-
alies, trend analysis, and automatic reporting, These func-
tions, while not in themselves of interest in AI or computer
science research, are vital components of a real-world diag-
nostic system. In addition, each subsystem process can
provide diagnosis of failures based on anomalous data and
recommend corrective actions. The latter two functions are
provided by knowledge-based modules that are embedded
within each of the individual subsystem monitors. The re-
maining modules include the grap-hical user interface and
display processes for each of the subsystem monitors, and the
system-level diagnostic agent for handling failures that man-
ifest themselves across multiple subsystems (and therefore
cannot be completely analyzed by any one subsystem alone).
Detailed reasoning examples that illustrate cooperation
among diagnosis modules are presented elsewhere [Schwut-
tke and Quan 1993].

3.0 EXPERT SYSTEM CHARACTERISTICS
Rule-based diagnostic modules are embedded in effi-

cient algorithmic code, The algorithmic code performs all
functions that do not explicitly require reasoning capability,
so that the use of the less efficient reasoning modules is linl-
ited to those functions for which it is essential.

knowledge. Reasoning is activated by the appearance of data
that requires diagnosis. The initial determination that diag-
nosis is required is made by algorithmic monitoring code,
which detects potential anomalies algorithmically and passes
the anomalous data to an appropriate diagnostician. In the
absence of anomalous data within its domain, a diagnostic
system is idle.

Each diagnostic system is responsible for a small, clear-
ly partitionable domain of expertise. Partitioning is governed
by the natural decomposition of the system being diagnosed.
This helps overcome disadvantages associated with rule-
based systems for which, typically, implementation can be
intractable, execution is nondeterministic and relatively
slow, and verification can be difficult. Small, modular
knowledge-bases enable developers to handle more easily
definable subproblems, Smaller knowledge bases execute
more efficiently, because less time is spent in search. Finally,
smaller knowledge-bases are easier to verify.

Each diagnostician has sufficient knowledge to be fully
accountable for diagnoses within its area and has no knowl-
edge of other domains. This requires that accountability for
locally detectable failures must be local. However, the par-
ticipation of more than one diagnostic system is required
when symptoms manifest themselves in more than one
domain. Each diagnostic system has the necessary meta-
knowledge to identify symptoms of failures that could
possibly extend beyond its domain. Metaknowledge is con-
tained in a set of rules in each knowledge-base, and is
associated with the occurrence of events whose analysis may
require the cooperation of other agents

An expert forwards all known information pertaining to
failures beyond its domain to another agent at the next higher
level in the hierarchy. The underlying approach on forward-

.,.,
.

ed messages is conservative; it is up to the agent receiving the
information to determine whether a fault requiring a diag-
nostic message and an alarm has occurred or whether the
anomalous data has some other explanation. When neces-
sary, metaknowledge is used to direct messages to the
relevant agent(s) in order to complete the final analysis of the
anomalous data and provide diagnosis of any associated
failures.

4.0 EXPERIMENTAL RESULTS
The distributed architecture described in this paper has

been applied to two generations of real-time monitoring
systems, The Galileo system, currently under development,
does not yet include on-line modules for diagnosis. The Voy-
ager system, completed in 1991, contains four diagnostic
expert systems (developed using a commercial shell) in a
two-level hierarchy.

Conventional monitoring modules for four of the space-
craft subsystems were completed: the flight data subsystem,
the computer command subsystem, the attitude and articula-
tion control subsystem, and the telecom subsystem. Three of
our experl systems are embedded in conventional modules
that provide data accesshnanipulation and monitoring in ad-
dition to providing graphical user interfaces and other sub-
system specific automation. The system-level diagnostician
is not embedded within another module.

The computer command subsystem (CCS) expert con-
tains on the order of 150 rules, focuses on a relatively broad
domain analysis, and is invoked very frequently (for almost
every parameter). The attitude and articulation control sub-
system (AACS) expert contains approximately 100 rules, and
focuses on a more narrow domain of analysis. It is invoked
infrequently. The telecom expert system contains on the or-
der of twenty-five rules and is invoked continuously (for
every pmameter), The flight data subsystem (FDS) module
does not contain an expert system.

Experimental evaluation on a network of workstations
(Sun Microsystems Spare LXS running Solaris 2.2) involved a
series of tests to determine the maximum number of data pa-
rameters that could be processed per module per second (a
subsystem module includes both the conventional and
knowledge-based components as shown in Figure 1). The
primary purpose of this evaluation was to learn about the per-
formance of the expert systems and apply our insights to
future development on the Galileo application. This evalua-
tion was not motivated by a need to improve the performance
of the Voyager system, as current data rates are considerably
slower than during the planetary encounters and are easily
handled by the existing software configuration.

The results are shown in Figure 2. The baseline perfor-
mance was below expectation, with FDS, CCS, AACS and
Telecom processing 26,3,24, and 428 parameters per second
respective] y,or481 total parameters per second processed by
the entire system. Performance profiling revealed that file 1/0
and the graphical user interfaces (GUIS) rather than the diag-
nostic modules were primary performance bottlenecks.

With regard to these bottlenecks, the four modules can
bc categorized as follows. FIX and CDS have moderately
complex GUIS, and perform significant file 1/0. AACS has
the most complex GUI and performs very little file 1/0, be-
cause the input files read by this subsystem are sufficiently

small that they are read entirely into memory upon system
initialization. Telecom has a simple GUI and performs no file
1/0.

Optimizing file 1/0 where possible improved perfor-
mance to 53, 16, 81, and 428 parameters per second. (This is
the only improvement discussed in this section that was car-
ried forward to the operational system.) Simplifying the
graphical user interface by eliminating real-time scrolling
windows (known to be computationally inefficient in MOTIF
user interfaces; considered desirable by end-users and thus
included in the FDS, CCS, and AACS modules of the opera-
tional system) further improved performance to 53, 35, 172,
and 428 parameters per second. Eliminating the graphical
user interface entirely resulted in further performance in-
creases to 67, 35, 646, and 570 parameters per second.
Finally, eliminating the expert systems yielded performance
of 67, 273, 668, and 570 parameters per second.

These results made it possible to gain a number of new
insights with regard to our system. The biggest surprise was
the high performance of the telecom module. The combina-
tion of the small knowledge base and the simple user inter-
face enables processing of 428 parameters per second.
Elimination of both the GUI and the expert system only re-
sults in a further performance improvement on the order of
25 percent, indicating that no substantial penalty is associated
with the significant enhancement to functionality provided
by these two components of the module. The next generation
system will benefit from this result, in that frequently per-
formed analysis that requires the use of an expert system will
be implemented with a number of small, cooperating mod-
ules rather than one larger module. This in itself is not
unexpected; it is the magnitude of the benefit that was
surprising. Further performance improvement could likely
be gained with a more efficient expert system shell. This will
be investigated although we do not currently expect more
than an additional order of magnitude improvement.

The AACS expert system is larger by a factor of four,
and slower, in the worst case, by over two orders of
magnitude. This can be explained by a significantly larger
search space and greater depth in each search. Performance
could likely be itnproved with a faster reasoning shell and by
modularization of the knowledge base. However, the diag-
nostic component of this module is invoked sufficiently
rarely (often less than once per hour) that this is not an im-
portant bottleneck. In the case of this type of module, it is
preferable to simplify the GUI, which continues to impose
considerable resource overhead.

The CCS expert system is large and is invoked regularly
as part of ongoing trend analysis in that subsystem module.
Elimination of the expert system results in an additional order
of magnitude increase in performance, providing further in-
dication that a large knowledge base is inappropriate for
frequently invoked real-time diagnosis. The CCS knowledge
base is characterized by breadth rather than depth. As a re-
sult, it would both beneficial (and straightforward) to reduce
it to three or more component modules without imposing sig-
nificant overhead from resulting interprocess communication.
(If this were implemented, the CCS module would still be 1/0
bound, as it reads from a number of very large files.)

As a re;ult of these insights, the Galileo implementation
takes a more efficient approach to file 1/0. It also tends to be
more efficient in its graphical user interface, in that it does

.
!.

4

-* “

7.0 r

u
Baseline Better Simpler No GUI No KBS

File 1/0 GUI

Figure 2. Performance results for each of the subsystem modules.

Spacecraft Subsystems

m Telecom

AACS

c 1 Ccs

FDS

J

not include some of the higher-overhead user interface
widgets. Such changes impact functionality, requiring a cer-
tain amount of negotiation with end-users (who are typically
willing to compromise in favor of perfortnance). In addition,
the Galileo system makes greater use of the distributed ar-
chitecture with more than one module per subsystem, and
more than one diagnostic component per module.

5.0 CONCLUSION
The MARVEL distributed architecture demonstrates the

successful implementation of multiple cooperating agents in
a complex real-time diagnostic system, We have designed an
architecture that facilitates concurrent and cooperative pro-
cessing by multiple agents in a hierarchical organization.
These agents adhere to the concepts of data-driven embed-
ded diagnosis, constrained but complete nonoverlapping
domains, metaknowledge of global consequences of anoma-
lous data, hierarchical reporting of problems that extend
beyond an agent’s domain, and shared responsibility for
problems that overlap domains.

The MARVEL architecture is simple and well suited for
real-time telemetry analysis. Conventional processing is
used wherever possible in order to facilitate performance.
The knowledge-based agents are embedded within the algo-
rithmic code, and are invoked only when necessary for
diagnostic reasoning. Distribution of telemetry monitoring
and diagnostic processes across workstations provides sig-
nificant improvement in performance. These qualities allow
for efficient real-time diagnosis of anomalies occurring in a

complex application,

Maximum modu]arization of frequently invoked rea-
soning modules will enable significant performance im-
provements in the next generation system.

6.0 REFERENCES
Cohen, P. R.; Hart, D. M.; and Howe, A. E. 1990,
“Addressing Real-time Constraints in the Design of Auton-
omous Agents. ” COINS Technical Report 90-06. University
of Massachusetts at Amherst.

Durfee, E. H. 1988. “Cooperation through Communication
in a Distributed Problem Solving Network. ” In Distributed
Artificial Intelligence, Vol. 2. Pitman Publishing, 1988.
Jennings, N. R.; and Mamdani, E. H. 1992. “Using Joint Re-
sponsibility to Coordinate Collaborative Problem Solving in
Dynamic Environments.” In Proceedings of the Tenth Na-
tional Conference on Artificial lnteliigence, San Jose,
California, 269-275.
Schwuttke, U. M.; Quan, A. G.; Angelino, R.; Childs, C.
L.; Veregge, J. R.; Yeung, R.; and Rivera, M. B. 1992.
“MARVEL: A Distributed Real-time Monitoring and Anal-
ysis Application.” In Innovative Applications of Artt~cial
intelligence 4, MIT Press.
Schwuttke, U. M.; and Quan, A. G. 1993. “Enhancing Per-
formance of Cooperating Agents in Real-time Diagnostic
systems.” In Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence, Chambery,
France. 332-337.

